Estimativa Média Móvel


Estimativa da tendência média móvel Este exemplo mostra como estimar a tendência de longo prazo usando uma função de média móvel simétrica. Esta é uma convolução que você pode implementar usando conv. A série temporal é contabilização mensal de passageiros internacionais de passageiros de 1949 a 1960. Carregue o conjunto de dados da companhia aérea (DataAirline). Os dados mostram uma tendência linear e um componente sazonal com periodicidade 12. A periodicidade dos dados é mensal, de modo que uma média móvel de 13 termos é uma opção razoável para estimar a tendência a longo prazo. Use o peso 124 para os primeiros e últimos termos, e peso 112 para os termos interiores. Adicione a estimativa da tendência média móvel ao gráfico de séries de tempo observado. Quando você usa o parâmetro de forma válido na chamada para conv. As observações no início e no final da série estão perdidas. Aqui, a média móvel tem o comprimento da janela 13, portanto as primeiras e últimas 6 observações não possuem valores suavizados. MATLAB e Simulink são marcas registradas da The MathWorks, Inc. Por favor, veja mathworkstrademarks para obter uma lista de outras marcas registradas pertencentes à The MathWorks, Inc. Outros produtos ou nomes de marcas são marcas comerciais ou marcas registradas de seus respectivos proprietários. Selecione o seu país6.2 Médias móveis ma 40 elecsales, ordem 5 41 Na segunda coluna desta tabela, uma média móvel da ordem 5 é mostrada, fornecendo uma estimativa do ciclo da tendência. O primeiro valor nesta coluna é a média das cinco primeiras observações (1989-1993), o segundo valor na coluna 5-MA é a média dos valores 1990-1994 e assim por diante. Cada valor na coluna 5-MA é a média das observações no período de cinco anos centrado no ano correspondente. Não há valores nos dois primeiros anos ou nos últimos dois anos porque não temos duas observações em ambos os lados. Na fórmula acima, a coluna 5-MA contém os valores de chapéu com k2. Para ver como se parece a estimativa do ciclo de tendência, nós o traçamos juntamente com os dados originais na Figura 6.7. Planilha 40 elesales, quot principal de vendas de eletricidade residencial, ylab quotGWhot. Xlab quotYearquot 41 linhas 40 ma 40 elecsales, 5 41. col quotredquot 41 Observe como a tendência (em vermelho) é mais suave que os dados originais e captura o movimento principal das séries temporais sem todas as pequenas flutuações. O método de média móvel não permite estimativas de T onde t é próximo das extremidades da série, portanto, a linha vermelha não se estende às bordas do gráfico de cada lado. Mais tarde, usaremos métodos mais sofisticados de estimativa do ciclo de tendência que permitem estimativas próximas aos pontos finais. A ordem da média móvel determina a suavidade da estimativa do ciclo da tendência. Em geral, uma ordem maior significa uma curva mais suave. O gráfico a seguir mostra o efeito de alterar a ordem da média móvel para os dados residenciais de vendas de eletricidade. As médias móveis simples, como estas, geralmente são de ordem ímpar (por exemplo, 3, 5, 7, etc.). É assim que são simétricas: em uma média móvel da ordem m2k1, há k observações anteriores, k observações posteriores e a observação do meio Que estão em média. Mas se eu fosse igual, não seria mais simétrico. Médias móveis das médias móveis É possível aplicar uma média móvel a uma média móvel. Um dos motivos para isso é fazer uma média móvel em ordem uniforme simétrica. Por exemplo, podemos tomar uma média móvel da ordem 4 e, em seguida, aplicar outra média móvel da ordem 2 aos resultados. Na Tabela 6.2, isso foi feito nos primeiros anos dos dados de produção de cerveja trimestral australiana. Beer2 lt - window 40 ausbeer, começar 1992 41 ma4 lt-ma 40 beer2, order 4. center FALSE 41 ma2x4 lt-ma 40 beer2, order 4. center TRUE 41 A notação 2times4-MA na última coluna significa 4-MA Seguido por um 2-MA. Os valores na última coluna são obtidos tomando uma média móvel da ordem 2 dos valores na coluna anterior. Por exemplo, os dois primeiros valores na coluna 4-MA são 451.2 (443410420532) 4 e 448.8 (410420532433) 4. O primeiro valor na coluna 2times4-MA é a média desses dois: 450.0 (451.2448.8) 2. Quando um 2-MA segue uma média móvel de ordem par (como 4), é chamado de média móvel centrada da ordem 4. Isso ocorre porque os resultados agora são simétricos. Para ver que este é o caso, podemos escrever o 2times4-MA da seguinte forma: comece o amplificador de amplificação. Bigfrac (y y y y) frac (y y y y) Grande amplificação fractura fractura fratão frac14y frac14y frac18y. Fim É agora uma média ponderada de observações, mas é simétrico. Outras combinações de médias móveis também são possíveis. Por exemplo, um 3x3-MA é freqüentemente usado e consiste em uma média móvel da ordem 3, seguida de outra média móvel da ordem 3. Em geral, uma ordem final MA deve ser seguida por uma ordem final MA para torná-la simétrica. Da mesma forma, uma ordem ímpar MA deve ser seguida por uma ordem ímpar MA. Estimando o ciclo de tendência com dados sazonais O uso mais comum de médias móveis centradas é estimar o ciclo de tendência a partir de dados sazonais. Considere o 2x4-MA: fractura de fractura e fractura fratura de fractura. Quando aplicado a dados trimestrais, cada trimestre do ano recebe peso igual à medida que o primeiro e o último termos se aplicam ao mesmo trimestre em anos consecutivos. Consequentemente, a variação sazonal será promediada e os valores resultantes do chapéu t terão pouca ou nenhuma variação sazonal restante. Um efeito semelhante seria obtido usando um 2x 8-MA ou um 2x 12-MA. Em geral, 2 vezes m-MA é equivalente a uma média móvel ponderada da ordem m1 com todas as observações tomando peso 1m, exceto para os primeiros e últimos termos que tomam pesos 1 (2m). Então, se o período sazonal é igual e de ordem m, use um 2-m-MA para estimar o ciclo da tendência. Se o período sazonal for estranho e de ordem m, use um m-MA para estimar o ciclo de tendências. Em particular, um 2x 12-MA pode ser usado para estimar o ciclo de tendência dos dados mensais e um 7-MA pode ser usado para estimar o ciclo de tendência dos dados diários. Outras opções para a ordem do MA geralmente resultarão em estimativas do ciclo de tendência sendo contaminadas pela sazonalidade nos dados. Exemplo 6.2 Fabricação de equipamentos elétricos A Figura 6.9 mostra um 2x12-MA aplicado ao índice de pedidos de equipamentos elétricos. Observe que a linha suave mostra nenhuma sazonalidade é quase o mesmo que o ciclo de tendência mostrado na Figura 6.2, que foi estimado usando um método muito mais sofisticado do que as médias móveis. Qualquer outra escolha para a ordem da média móvel (exceto 24, 36, etc.) teria resultado em uma linha suave que mostra algumas flutuações sazonais. Lote 40 elecequip, ylab quotNome ordem de pedidos. Quotgrayquot quotgrayquot principal quotEquipamento de equipamentos elétricos (área do euro) 41 linhas 40 ma 40 elecequip, ordem 12 41. col quotredquot 41 médias móveis ponderadas As combinações de médias móveis resultam em médias móveis ponderadas. Por exemplo, o 2x4-MA discutido acima é equivalente a um 5-MA ponderado com pesos dados por frac, frac, frac, frac, frac. Em geral, um m-MA ponderado pode ser escrito como hat t sum k aj y, onde k (m-1) 2 e os pesos são dados por a, pontos, ak. É importante que todos os pesos somem para um e que sejam simétricos para que aj. O m-MA simples é um caso especial em que todos os pesos são iguais a 1m. Uma grande vantagem das médias móveis ponderadas é que eles produzem uma estimativa mais suave do ciclo da tendência. Em vez das observações que entram e saem do cálculo em peso total, seus pesos aumentam lentamente e diminuem lentamente resultando em uma curva mais suave. Alguns conjuntos específicos de pesos são amplamente utilizados. Alguns destes são dados na Tabela 6.3.Por prática, a média móvel proporcionará uma boa estimativa da média da série temporal se a média for constante ou a mudança lenta. No caso de uma média constante, o maior valor de m dará as melhores estimativas da média subjacente. Um período de observação mais longo significará os efeitos da variabilidade. O objetivo de fornecer um m menor é permitir que a previsão responda a uma mudança no processo subjacente. Para ilustrar, propomos um conjunto de dados que incorpora mudanças na média subjacente das séries temporais. A figura mostra as séries temporais usadas para ilustração juntamente com a demanda média da qual a série foi gerada. A média começa como uma constante em 10. Começando no tempo 21, ela aumenta em uma unidade em cada período até atingir o valor de 20 no tempo 30. Então, torna-se constante novamente. Os dados são simulados adicionando à média, um ruído aleatório de uma distribuição Normal com média zero e desvio padrão 3. Os resultados da simulação são arredondados para o inteiro mais próximo. A tabela mostra as observações simuladas usadas para o exemplo. Quando usamos a tabela, devemos lembrar que em qualquer momento, apenas os dados passados ​​são conhecidos. As estimativas do parâmetro do modelo, para três valores diferentes de m, são mostradas em conjunto com a média das séries temporais na figura abaixo. A figura mostra a estimativa média móvel da média em cada momento e não a previsão. As previsões mudariam as curvas médias móveis para a direita por períodos. Uma conclusão é imediatamente aparente da figura. Para as três estimativas, a média móvel está atrasada por trás da tendência linear, com o atraso crescente com m. O atraso é a distância entre o modelo e a estimativa na dimensão temporal. Por causa do atraso, a média móvel subestima as observações à medida que a média está aumentando. O viés do estimador é a diferença em um momento específico no valor médio do modelo e o valor médio previsto pela média móvel. O viés quando a média está aumentando é negativo. Para uma média decrescente, o viés é positivo. O atraso no tempo e o viés introduzido na estimativa são funções de m. Quanto maior o valor de m. Maior a magnitude do atraso e do viés. Para uma série de crescimento contínuo com tendência a. Os valores de lag e tendência do estimador da média são dados nas equações abaixo. As curvas de exemplo não combinam essas equações porque o modelo de exemplo não está aumentando continuamente, antes ele começa como uma constante, muda para uma tendência e depois se torna constante novamente. Também as curvas de exemplo são afetadas pelo ruído. A previsão média móvel de períodos no futuro é representada pela mudança das curvas para a direita. O atraso e o desvio aumentam proporcionalmente. As equações abaixo indicam o atraso e a polarização de um período de previsão para o futuro em relação aos parâmetros do modelo. Novamente, essas fórmulas são para uma série de tempo com uma tendência linear constante. Não devemos nos surpreender com esse resultado. O estimador da média móvel é baseado na suposição de uma média constante, e o exemplo tem uma tendência linear na média durante uma parcela do período de estudo. Uma vez que as séries em tempo real raramente obedecerão exatamente aos pressupostos de qualquer modelo, devemos estar preparados para esses resultados. Também podemos concluir a partir da figura que a variabilidade do ruído tem o maior efeito para m menores. A estimativa é muito mais volátil para a média móvel de 5 do que a média móvel de 20. Temos os desejos conflitantes de aumentar m para reduzir o efeito da variabilidade devido ao ruído e diminuir m para tornar a previsão mais sensível às mudanças Em média. O erro é a diferença entre os dados reais e o valor previsto. Se a série temporal é verdadeiramente um valor constante, o valor esperado do erro é zero e a variância do erro é composta por um termo que é uma função e um segundo termo que é a variância do ruído,. O primeiro termo é a variância da média estimada com uma amostra de observações m, assumindo que os dados provêm de uma população com um meio constante. Este termo é minimizado fazendo m o maior possível. Um grande m faz com que a previsão não responda a uma mudança nas séries temporais subjacentes. Para tornar as previsões sensíveis às mudanças, queremos m o mais pequeno possível (1), mas isso aumenta a variação do erro. A previsão prática requer um valor intermediário. Previsão com o Excel O suplemento de previsão implementa as fórmulas de média móvel. O exemplo abaixo mostra a análise fornecida pelo suplemento para os dados da amostra na coluna B. As primeiras 10 observações são indexadas -9 a 0. Comparadas com a tabela acima, os índices do período são deslocados em -10. As primeiras dez observações fornecem os valores de inicialização para a estimativa e são usadas para calcular a média móvel para o período 0. A coluna MA (10) (C) mostra as médias móveis calculadas. O parâmetro médio móvel m está na célula C3. A coluna Fore (1) (D) mostra uma previsão para um período no futuro. O intervalo de previsão está na célula D3. Quando o intervalo de previsão é alterado para um número maior, os números na coluna Fore são deslocados para baixo. A coluna Err (1) (E) mostra a diferença entre a observação e a previsão. Por exemplo, a observação no tempo 1 é 6. O valor previsto feito a partir da média móvel no tempo 0 é 11,1. O erro então é -5.1. O desvio padrão eo desvio médio médio (MAD) são calculados nas células E6 e E7, respectivamente.

Comments

Popular posts from this blog

Média Linear Em Movimento Média Vs Exponencial Linear

Taxas Abertas Do Mercado Aberto Rúpia Do Paquistão

En Iyi Forex Indikatг¶Rleri